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Abstract 
 Fire blight caused by Erwinia amylovora is a sporadic disease that can cause 
major damage and important tree loss in many apple and pear growing regions. 
Many infections occur when suitable weather conditions are met during bloom 
period. Timely applications of antibiotics or biocontrol agents during this period can 
dramatically reduce disease severity. Consequently, a number of forecasting systems 
have been developed to help predict disease outbreaks based on these criteria. 
Unfortunately, these systems can generate false positive warnings because either the 
inoculum pressure in orchards was not sufficient to cause disease, because the 
models can overestimate pathogen growth, or the cultivar is less susceptible. 
Conversely, models can also generate false negative prognosis under conditions 
considered marginal for bacterial growth or when localised wetness events cannot be 
recorded adequately. The RIMpro-erwinia model addresses part of these problems 
by including recent findings on bacterial growth and infection through a simulation 
approach. The software calculates bacterial growth and the possibility of infection 
on each individual daily flower cohorts. Epiphytic bacterial growth calculations are 
based on a nonlinear model that accounts for low temperature growth. Flower 
infection is predicted based on population size during wetness events. Flower cohorts 
not meeting the colonization and infection criteria are discarded from calculations 
as they age. Preliminary data collected since 2007 suggest that using this approach 
improves blight prediction as compared to Cougarblight and Maryblyt. 

  

INTRODUCTION 
 In most apple and pear growing regions around the world, fire blight caused by 
Erwinia amylovora is a sporadic disease that can cause major damage and important tree 
loss. Many infections occur when suitable weather conditions are met during bloom. 
Timely applications of antibiotics or biocontrol agents during this period can dramatically 
reduce disease severity. Consequently, a number of forecasting systems have been 
developed to help predict disease outbreaks (Billing, 2000) and are described on the UC 
Davis IPM web page (Anonymous, 2010). 

Unfortunately, current systems in use are not very reliable (Dewdney et al., 2007). The 
models can generate false positive warnings (Type I error) because the inoculum pressure 



in orchards was not sufficient to cause disease (Johnson and Stockwell, 1998), the 
cultivar is less susceptible, and possibly because the models tend to overestimate 
pathogen growth under certain conditions. Conversely, the models can also generate false 
negative prognosis (Type II error). Part of the errors are not due to the models per say, but 
as a consequence of regional weather networks that can be inadequate to reflect localized 
events. Nonetheless, models may also fail to predict outbreaks because conditions 
currently considered marginal for bacterial growth could in fact be sufficient to cause 
disease. Both types of errors can affect grower adoption of models for disease 
management. Since a single false negative prognosis can have a huge financial impact, 
growers can become over cautious for a number of years after the event, despite 
conditions unfavorable for disease. Consultants also tend to artificially increase Type I 
errors by relaxing model assumptions in favor of disease predictions. For instance, to 
avoid the risk of missing localized events, they may forego the requirement for a wetness 
event even if this plays a crucial role in fire blight outbreaks. Conversely, a high false 
discovery rate results in growers not following recommendations after a few years of 
unnecessary sprays and eventually putting the orchard again at risk. Antibiotics applied 
when conditions are not favorable for disease development are not very likely to impact 
pathogen resistance, but are prone to raise public concerns over health and environmental 
issues. Despite limitations in what can be achieved with disease forecasts, an improved 
model is likely to increase grower adoption and improve risk management. 

The RIMpro-erwinia software was developed as an attempt to reduce model inadequacies 
by simulating from individual processes both the bacterial growth and the possibility of 
infection on individual daily flower cohorts. The complexity of calculations required to 
do so is in sharp contrast with empirical models such as Billings, Maryblyt and 
Cougarblight that are based around a few simple rules, but this is not a limiting factor for 
current computing technology. On the other hand, it does allow the flexibility to test the 
impact of different components of the biology on disease epidemiology. This is not the 
first attempt to simulate fire blight and follows some similarity to the approach published 
by Timmerman (1989) albeit with a different technique. Similarly to other RIMpro 
models (Trapman, 1994; Trapman, 2004; Trapman et al., 2008; Philion et al., 2009), the 
simulation is designed to follow in time each individual processes from flower opening, 
colonization, infection and disease expression.  

 

MODEL DESCRIPTION 

Inoculum potential and prebloom buildup 
 The idea of integrating recent outbreak history in the vicinity of a grower’s 
orchard (Jacquart-Romon and Paulin, 1991; Smith, 1998) and/or to include weather 
conditions prior to bloom (Powell, 1965; Thomson et al., 1982), as risk factors that can 
contribute to inoculum dissemination once flowers open, was recognized as an important 
aspect of disease epidemiology that was discussed by Billing (2000). Early season 
climatic conditions favoring pre bloom inoculum development was also suggested as an 
explanation for recent outbreaks of fireblight in Southern Germany, Switzerland and 
Austria which prompted RIMpro-erwinia development. Unfortunately, this is not easily 
quantifiable and remains mostly empirical and thus was not included in our proposed 
framework (Table 1). This may be included in a future version of RIMpro, possibly as 



part of a method to account for overall inoculum availability. In the current version of 
RIMpro, inoculum availability is considered non limiting.  

Opening of flowers and colonization by Erwinia amylovora. 
 Flowers are generally considered devoid of bacteria before the petals open and are 
colonized only as bees or other insect vectors visit them, or from rain splashed from 
surrounding bacteria sources. Bacteria are mostly deposited on flower stigmas though 
physical contact of insects, which usually don’t touch the lower hypanthium tissue 
(Thomson, 1986). Because of host defense mechanisms, the low number of bacteria 
deposited is not likely to cause direct infection, so population buildup is generally 
required before infection can take place. The main exception to this rule is probably rain 
that can carry large amounts of bacteria from surrounding sources that can directly infect 
the flower (Thomson, 1986). In Maryblyt (Steiner, 1990), the proportion of open flowers 
colonized by the pathogen gave origin to the criteria of accumulation of degree- hours 
(DH) >18,3C following research done on pears (Zoller and Sisevich, 1979). In the current 
version of RIMpro, the software assumes initial inoculation of the whole daily flower 
cohort to occur as soon as daytime temperature reaches at least 15C for 2 hours, based on 
the temperature required for pollinating insect flight. The software does not attempt to 
determine what proportion of the cohort is colonized and this is beyond the current 
version. Lindow and Suslow (2003) and Stockwell et al. (1999) both report flowers 
devoid of bacteria over a week after opening because colonization was limited by local 
inoculum availabitility. As more data becomes available, the RIMpro model assumption 
may change to include adjustments for the availability of local inoculum source, or the 
rapid redistribution of bacteria due to rain. Currently, once the daily the colonization 
criteria are met, a submodel for epiphytic bacterial development on stigma is triggered for 
the flower cohort of that day with a starting inoculum default of 10 CFU. 

Epiphytic growth 
 Stigmas are known to be the site where most bacterial development occurs prior to 
infection (Thomson, 1986). Data reviewed by Billing (2000) clearly shows that epiphytic 
populations can reach levels sufficient for infection under natural conditions, despite 
average temperatures of only 14C and daily high temperatures below 16C. Additionally, 
about 15% of fire blight cases recorded from around the world that were analyzed by 
Dewdney et al. (2007) occurred under temperatures below the thresholds defined in 
Maryblyt. Furthermore, some models use a temperature function which is linearly 
proportional to temperature, wheras bacteria growth is not. In consequence, both RIMpro 
and Cougarblight calculate epiphytic bacterial growth based on a nonlinear growth curve. 
In RIMpro, data adapted from a few studies (Billing, 1974; Schouten, 1987; Pusey and 
Curry, 2004) were compared and the equation of Schouten was selected in a preliminary 
version, with a correction factor to calibrate the model for field conditions. Bacteria 
doubling time (in hours) is modeled with: ((24/20)/sin(4.2*10-4 * T2.46))/0.55 where T is 
equal to hourly air temperature (in Celcius) and negative outcomes are reset to zero. 
Further refinements based on recent data from (Pusey and Smith, 2010) and a different 
modeling approach (Arauz et al., 2010) are planned in a future version. It follows that at 
lower temperatures both Cougarblight and RIMpro do not include a provision for a 
reduction in bacterial colonization as suggested in Maryblyt, but rather a reduction in 
population growth rate (Table 1).  



Carrying capacity of stigma 
 The maximum bacterial population on the pistil in RIMpro was set at 1x107 CFU 
following work on the carrying capacity discussed in Johnson and Stockwell (1998). 
Stigma may harbour bacteria for a long time, but the period of receptivity during which it 
can sustain population increases is limited (Lindow and Suslow, 2003). According to 
Thomson and Gouk (2003), the inability of E. amylovora to multiply on older stigma 
could be associated with papillae collapse. In RIMpro, the model for the maximum 
sustainable population during flower life (Figure 1) was built using data from Thomson 
and Gouk (2003).  

The model relates the carrying capacity of the flower to the age of the flower when it is 
colonized and the time required for bacteria to reach the carrying capacity. According to 
this model, for flowers immediately colonized after opening (inoculation age = 0), the 
carrying capacity on apple is reduced to 103.5 CFU after 113 DD (base 4C), in contrast to 
either Maryblyt and Cougarblight which limit bacterial growth to a maximum of 45DD 
base 4C and 4 days respectively (Table 1). A different model may be required for pear 
blossoms.  

Floral expansion model 
 Because flowers start opening over a number of days, only a proportion of flower 
clusters can be colonized on any particular day, thus influencing the daily relative risk. 
The most striking example of this comes from “late” flowers (also refered to as rat tail 
bloom) that are less numerous but are likely to open under higher temperatures conducive 
for fire blight. However, since few flowers can also be found several weeks after normal 
bloom, the relative risk of these must be weighed. The current version of RIMpro doesn’t 
include a correction factor for this and each flowering day is currently treated with equal 
weight and assumed at maximum bloom. In consequence, advisors need to adjust for 
local conditions, varieties and special cases such as the flowering dates of newly planted 
trees. Since fire blight dynamics is most likely heavily influenced by flowering dynamics, 
this aspect needs to be addressed, but inclusion in a general model is difficult and beyond 
the scope of the current project. None of the models currently in use include a correction 
for floral expansion. 

Movement of bacteria from stigma to hypanthium 
 Bacteria present on flower stigma need to reach the hypanthium for infection. In 
RIMpro, this process was adapted from work published by Pusey (2000) and Pusey and 
Smith (2004). When flowers are wetted, the initial population on the hypanthium is set be 
3 logs lower than that reached on the stigma of apple and only 1 log lower for pears. Any 
wetness event that can be recorded by the datalogger is deemed sufficient to carry the 
transfer process. Given the carrying capacity of pistils and the maximum number of 
bacteria transferred, 104 bacteria is the maximum starting population on the wet 
hypanthium. 

Epiphytic growth on hypanthium  
 Bacteria driven down from the stigma surfaces to the bottom of the flower cup 
need to enter the plant through nectarthodes which are the site of release of the nectar 
produced by the nectaries (Bubán and Orosz-Kovács, 2003). Normally, bacteria die in 
close proximity of the nectarthodes because the water activity of the nectar is very low. 
However, when the flowers are wet, the nectar is diluted and bacterial growth becomes 



possible. Growth of bacteria on hypanthium tissue is most likely a key difference between 
fire blight epidemiology in wet climates (East coast of America and Northern Europe) as 
opposed to dryer climates (West cost of America and Southern Europe) (Thomson, 1986). 
Pusey (2000) published a model showing a sigmoidal relation between relative humidity 
and bacterial growth on both stigmas and hypanthia and showed that humidity >80% can 
play a significant role in bacterial growth on the hypanthium. Although these models 
were not meant to be used directly, it seems likely that a simulation model should include 
provision for bacterial growth on the hypanthium for ambient relative humidities higher 
than 80%. In RIMpro, as long as the flowers remain wet or the ambient relative humidity 
remains above 80%, bacterial growth on the hypanthium is modeled using the 
temperature equation used for epiphytic growth. The bacterial population at the surface of 
the nectaries is set to zero whenever the flowers are dry and relative humidity is below 
80%. 

Infection of nectaries in relation to flower age 
 Because hypanthium susceptibility decreases with flower age, the time available 
for infection is limited. From Pusey and Smith (2008), it was possible to derive a model 
for hypanthial susceptibility in vitro. Their data relating flower age and temperature to 
disease incidence showed a nearly perfect negative linear relation with disease incidence 
on the logit scale (Figure 2). According to this model, flowers remain at maximum 
susceptibility until about 45 DD (base 4C) and then decreased to 0 at 150DD. Field 
disease severity data from the same study (Figure 3) showed a less striking impact of 
flower age, but also overall reduced disease incidence. In this study, field infection 
following hypanthial inoculation occurred at a lower temperature and relative humidity 
than the laboratory experiment and this might have masked part of the hypanthial age 
effect. It is noteworthy that contrary to other forecaster assumptions, flowers remain 
susceptible for a number of days after petal fall which starts at about 45 DD (base 4C).  

Infection of nectaries in relation to inoculum concentration 
Contrary to other studies using whole flower inoculations, Pusey and Smith (2008) 
looked at the effect of inoculum concentration in the hypanthium in relation to disease 
severity. A model derived from their data (Figure 3) was used to determine the proportion 
of the daily flower cohort infected in relation to the hypanthial population and age. Using 
the age slope of the model in Figure 2 and substituting in the inoculum model gives the 
proposed model: Logit of incidence =  -0.0875* DD (base 4C) + 1.12*log10(CFU) – 3.5. 
The intercept was arbitrarly set so that the threshold for cohort infection in the software is 
2%.  

Infection of nectaries in relation to temperature 
 On wet flowers, the diluted nectar originating from the nectarthodes creates a 
solution attractive to Erwinia amylovora which uses its flagella to follow the gradient to 
the nectarthodes. This process is temperature dependent (Steiner, 2000) and also depends 
on the presence of sufficient water to permit movement of bacteria. This was recognized 
in Maryblyt as a rule which inhibits infection at temperatures below 16C, which is a 
threshold temperature for coordinated flagellar movement towards the nectarthodes. 
Because infections are observed at lower temperatures, it seems this process is not a 
requirement for infection. In consequence, there is currently no provision for inhibition of 
infection at lower temperatures in RIMpro. As more data linking hypanthia inoculum 
levels and infection temperature become available, this may be included in a future 



version. Currently, the population of bacteria on the wetted hypanthium in relation to its 
age are the only criteria used for infection.  

DISCUSSION 
 RIMpro is built as a chain of biological sub process that are modeled according to 
our present knowledge of the underlying relations with environmental factors. The state 
of the sub processes are updated in short time steps (30 min). This so called “boxcar” 
approach (Rabbinge and De Wit, 1989) facilitates integration of both nonlinear equations 
and dispersion of the population on environmental influences, and also better reflects 
conditions at each time step. Wheras values such as the EIP in Maryblyt were designed to 
encompass many risk factors such as availability of open flowers, bee activity, etc (Biggs 
and Turechek, 2010), the goal of RIMpro is to separate these into submodels. Even 
though conditions favorable for individual factors are often correlated, the use of 
submodels can reflect particular conditions that can be missed by an empirical approach.  

The RIMpro-erwinia model is currently only in the very early stages of development and 
doesn’t address the full complexity of blossom blight. Nonetheless, a preliminary version 
that did not include the impact of hypanthial age was released to consultants for 
evaluation purposes. It successfully identified infection events that were not predicted by 
either Cougarblight and Maryblyt. It is possible that the limited dataset currently available 
for testing and validation may prove inadequate or insufficient to warrant large scale field 
use at this point. Nonetheless, following the recent papers published on bacterial 
populations on stigma and hypanthium susceptibility we felt it was time to release at least 
a framework for a simulation model.  

Still, current models including RIMpro will remain prone to generate false positive 
predictions when local inoculum levels are low. The inclusion of orchard fire blight 
history in Cougarblight helped improve the specificity of this model (Dewdney et al., 
2007) so that less false positive cases are found. Similar observations were done using 
Firescreens (Lecomte et al., 1996). A similar indicator of inoculum pressure is also 
needed in RIMpro. It is conceivable that in a near future a cheap and rapid detection 
technique will make this possible (Temple et al., 2007). Until inoculum pressure is fully 
integrated in the disease forecast, there is a limit to the level of accuracy that can be 
achieved with any model.  

The next step of this project will be to evaluate the accuracy of RIMpro-erwinia in 
comparison to other forecasters using ROC analysis and possibly other techniques which 
can assess whole season forecasts (Dewdney et al., 2007). A international database of fire 
blight epidemiology that would index cases (and controls) alongside inoculum pressure, 
cultivar, and weather files would be very useful to test RIMpro and other models.  
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Tables 

Table 1. Outline of major differences between RIMpro and most often used fire blight 
models. 

Model assumptions Maryblyt Cougarblight Rimpro 

Inoculum availability Abundant Grower input  Abundant 

Prebloom inoculum 
buildup 

Not included in bloom 
predictions 

None None 

Relation between 
epiphytic growth and 
temperature 

linear (Degree-hours 
above 18.3C) 

Nonlinear 

 

Nonlinear 

 

Bacterial death 33,50,100% when 
max. T < 18,3C for 
1,2,3 days 

None None 

Flower death 100% if min T < -4.4C None None 

 

Sustainability of 
bacterial growth on 
flower stigma 

44.4 DD (>4.4C) 4 days Carrying capacity 
based on flower 
age. 

Temperature and time 
required for infection 

Exemple : 

110DH > 18.3C   
(EIP) 

NA @ 16C 

65hrs @ 20C 

11hrs @ 28C 

Variable risk 
index 

NA @ 16C 

4 days @ 20C 

1 day @ 28C 

Flower age 
dependent 

4 days @16C 

2,5 days @20C 

1,5 days @28C 

Infection criteria 
following population 
threshold. 

>3hrs wetness or 
0.25mm rain or 

>2.5mm rain in last 
24hrs before EIP 
reached and T > 15.6C 

Rain and High 
risk index 

Measured wetness 
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Fig. 1. Effect of flower age at colonization time and during epiphytic growth on the 
carrying capacity for Erwinia amylovora. Data adapted from Thomson and Gouk 
(Bates and Maechler, 2010). For each flower inoculation age, the daily population 
reached after the initial maximum was assumed to be the carrying capacity of the 
flower on that day. Missing climate data were retrived from online sources using 
the Ruakura station for New Zealand (http://cliflo.niwa.co.nz/) and Hill air force 
base near Ogden for Utah (http://www.ncdc.noaa.gov). The model was fitted using 
logistic regression in a mixed effect linear model (GLMM) using the lmer function 
of R (Bates & Maechler 2010). Model selection was based on AIC and residual 
analysis. Inoculation age and sampling day within site were included as random 
intercepts. The fixed effects of the model were: Logit (log10(CFU) / max 
log10(CFU)) = 7.31073 - 0.07036 * inoculation age - 0.06471* sampling age. The 
fitted equation (filled line) and extremes of the random effects (dotted line) are 
represented on the graph. 
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Fig. 2. Effect of flower age on fire blight incidence after direct inoculation of hypanthium 
with 2.5 x 106 CFU. Data was adapted from Pusey and Smith (2008) by converting 
each temperature and flower age combinations to degree-days (base 4C). The model 
was fitted using logistic regression in a mixed effect linear model (GLMM) using 
the lmer function of R (Bates and Maechler, 2010). Model selection was based on 
AIC and residual analysis. Temperature was used as a random slope for each flower 
age as a random intercept. The fixed effects of the model were: Logit of incidence = 
-0.0875* flower age + 6.888. The fitted equation (filled line) is represented on the 
graph. 
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Fig. 3. Effect of inoculum concentration and flower age on disease incidence. Data was 
adapted from Pusey and Smith (2008) by converting each flower age in 2005 and 
2006 to degree-days (base 4C). A different panel was used for hypanthia inoculated 
with 102, 104, and 106 CFU respectively. The model was fitted using logistic 
regression in a mixed effect linear model (GLMM) using the lmer function of R . 
(Bates and Maechler, 2010). Model selection was based on AIC and residual 
analysis. Flower age within year was used as a random intercept. The fixed effects 
of the model were: Logit of incidence =  -0.0253* flower age + 1.12*log10(CFU) - 
5.541. The fitted equation (filled line) is represented on the graph. 
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